Global MHD modeling of resonant ULF waves: Simulations with and without a plasmasphere
نویسندگان
چکیده
We investigate the plasmaspheric influence on the resonant mode coupling of magnetospheric ultralow frequency (ULF) waves using the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamic (MHD) model. We present results from two different versions of the model, both driven by the same solar wind conditions: one version that contains a plasmasphere (the LFM coupled to the Rice Convection Model, where the Gallagher plasmasphere model is also included) and another that does not (the stand-alone LFM). We find that the inclusion of a cold, dense plasmasphere has a significant impact on the nature of the simulated ULF waves. For example, the inclusion of a plasmasphere leads to a deeper (more earthward) penetration of the compressional (azimuthal) electric field fluctuations, due to a shift in the location of the wave turning points. Consequently, the locations where the compressional electric field oscillations resonantly couple their energy into local toroidal mode field line resonances also shift earthward. We also find, in both simulations, that higher-frequency compressional (azimuthal) electric field oscillations penetrate deeper than lower frequency oscillations. In addition, the compressional wave mode structure in the simulations is consistent with a radial standing wave oscillation pattern, characteristic of a resonant waveguide. The incorporation of a plasmasphere into the LFM global MHD model represents an advance in the state of the art in regard to ULF wave modeling with such simulations. We offer a brief discussion of the implications for radiation belt modeling techniques that use the electric and magnetic field outputs from global MHD simulations to drive particle dynamics.
منابع مشابه
A simulation study of RX-mode waves generation in the equatorial plasmasphere
The generation mechanism of RX-mode waves in the equatorial plasmasphere has not been well understood. The Akebono passing through the storm time geomagnetic equator shows the possibility of the local enhancement of RX-mode waves in association with intense Z-mode waves in the equatorial region. We use the initial parameters inferred from observational data from around the plasma-wave generatio...
متن کاملRapid Acceleration of Electrons in the Magnetosphere by Fast-mode Mhd Waves
During major magnetic storms enhanced fluxes of relativistic electrons in the inner magnetosphere have been observed to correlate with ULF waves. The enhancements can take place over a period of several hours. In order to account for such a rapid generation of relativistic electrons, we examine the mechanism of transit-time acceleration of electrons by low-frequency fast-mode MHD waves, here th...
متن کاملDynamics of nonlinear resonant slow MHD waves in twisted flux tubes
Nonlinear resonant magnetohydrodynamic (MHD) waves are studied in weakly dissipative isotropic plasmas in cylindrical geometry. This geometry is suitable and is needed when one intends to study resonant MHD waves in magnetic flux tubes (e.g. for sunspots, coronal loops, solar plumes, solar wind, the magnetosphere, etc.) The resonant behaviour of slow MHD waves is confined in a narrow dissipativ...
متن کاملResonant flow instability of MHD surface waves
We study the effect of velocity shear on the spectrum of MHD surface waves. A nonuniform intermediate region is taken into account, so that the surface wave can be subject to resonant absorption. In order to deal in a mathematically and also physically consistent manner with the resonant wave excitation, we analytically derive the dissipative solution around the resonant surface in resistive MH...
متن کاملSolar wind driving of magnetospheric ULF waves: Field line resonances driven by dynamic pressure fluctuations
[1] Several observational studies suggest that solar wind dynamic pressure fluctuations can drive magnetospheric ultralow‐frequency (ULF) waves on the dayside. To investigate this causal relationship, we present results from Lyon‐Fedder‐Mobarry (LFM) global, three‐dimensional magnetohydrodynamic (MHD) simulations of the solar wind–magnetosphere interaction. These simulations are driven with syn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 121 شماره
صفحات -
تاریخ انتشار 2016